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Abstract. A simple dynamical system having a Berry phase component completely 
analogous to the Aharonov-Bohm circuit phase is presented. The underlying ‘magnetic- 
vector-potential-like’ object is identified. This parameter-space vector plays a vector- 
potential-like role at both quantal and classical levels. 

1. Introduction 

A magnetic vector potential can have no effect on the motion of a classical charged 
particle which passes through regions in which the potential has zero curl. Yet such 
regions significantly affect the wavefunction in the corresponding quantal case 
(Ehrenburg and Siday 1949, Aharonov and Bohm 1959). Briefly, an interferometer 
whose two arms encircle an infinitely long solenoid will record a fringe shift propor- 
tional to the circuit phase difference ( q / h )  $ A - d l =  ( q d / h )  when the solenoid is 
energised. Such classical-quantal contradictions are of general interest and con- 
sequently it is natural to enquire whether the Aharonov-Bohm (AB)  effect is the sole 
instance of its kind. That is, are there other ways whereby nature acts in a manner 
similar to A(  r )  on the phase of the wavefunction to produce significant physical effects, 
but fails to touch the motion of the corresponding classical object? It is the purpose 
of this paper to provide an affirmative answer to this question using a general theoretical 
development given by Berry (1984). 

Berry was concerned with the adiabatic transport of a system (classical or quantal) 
in the space of its parameters. If the time variation of the parameters is slow enough 
for the quantal adiabatic theorem to apply then, over and above the usual ‘dynamical 
phase’ (i.e. -ti-’ JOT d t  E,(f)), there appears an excess phase y which we shall call the 
geometric circuit phase (GCP). 

The properties of the GCP are most strikingly revealed when the system, initially 
in some eigenstate, traverses a closed circuit in parameter space. Then, the GCP depends 
only on the initial eigenstate and on the geometry of the circuit C. 

Now, as Berry noted, the AB effect can be viewed as the excess phase generated 
when (see figure 1 )  a charge, confined within a small box, is adiabatically transported 
around, say, a single flux line which never penetrates the box. Since 8= 
H(p^ - ( e / c ) A (  r ) ,  i -  R ) ,  where R( t )  represents the box position in real space, one can 
readily show that on completion of a single circuit the wavefunction changes its phase 
by (q4/ h ) ,  where 4 is the magnetic flux through the closed circuit C. 

Next, consider adiabatic transport of the corresponding classical system. Then, 
provided the Hamiltonian is integrable for every point on C, the motions of the 
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Figure 1. The adiabatic parameter space transport interpretation of the Aharonov-Bohm 
effect. 

phase-space angle variables, 8, are not just described by the usual formula: 8, = 
j l  d tw, ( t )  given by the classical adiabatic theorem. Excess angles, A8$, (see Hannay 
1985) whose distinctive features are best seen for cyclic parameter space paths, are 
generated. The 68, (called Hannay’s angles) are found to depend on the conserved 
tori actions and on the geometry of the closed path C. 

ABi and y,,(C) are conjugate quantities at the semiclassical level. The connection 
between the two was worked out by Berry (1985) who found that 

a a 
A 8i ( ; C ) = - h - yn, ( C ) = - - y ( C ) a 1, ani 

where the last equality is semiclassically correct, since I ,  = h ( n ,  + U , )  according to the 
rule of Bohr-Sommerfeld. The U, are unimportant constants in the present context. 

Returning to the AB effect we can now ask: what is the corresponding Hannay 
angle? Since B, the physically relevant field in an A B  experiment, vanishes outside the 
infinite solenoid, the angle is zero. This verifies the semiclassical connection formula, 
as the GCP (= q4/ h )  is action independent, i.e. it does not depend on the eigenstate 
of the particle inside the box. Since y -  h-’ we are, in fact, dealing with a purely 
quantal phenomenon, i.e. y (  h + 0) is undefined. 

We can now ask whether there are other systems which have such purely quantal 
geometric phases. That is, are there Hamiltonians whose cyclic, adiabatic excursions 
in parameter space generate a quantal GCP, while the very same excursions are classically 
‘hidden’. To date no such system has been identified. However, no simple a priori 
reason suggests that they do  not exist. On the contrary, no physical principle suggests 
a unique role for the magnetic vector potential in nature. 

We have found one such system, which is a generalisation of the generalised simple 
harmonic oscillator (GSHO) of Berry (1985) and Hannay (1985) as introduced in P 2. 
Our generalisation (GGSHO) is to augment the GSHO Hamiltonian by a constant external 
force field. The GCP is calculated using the Berry (1984) prescription. An alternate 
derivation is provided in 0 3. The ‘first principles’ derivation is included since it makes 
clear the simple, physical reasons that lie behind Berry’s GCP. The two derivations are 
shown to give identical answers. Additionally, the second derivation is much more 
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general and covers any time variation of the parameters of the system Hamiltonian. 
Section 4 is devoted to the classical analysis, i.e. calculation of Hannay’s angle. In 
§ 5, the results obtained are compared using the semiclassical connection formula of 
Berry (1985). It is shown that we have indeed produced a system which behaves, in 
the sense discussed, as a parameter-space analogue of the AB system. The GCP has a 
component that is entirely quantal. Its classical manifestation, like that of the magnetic 
vector potential in the A B  effect, is entirely ‘hidden’. 

Berry has pointed out that this paper draws attention to action-independent parts 
of classical 2-forms or, equivalently, n-independent quantal phases -yn ( C ) .  

2. Model system and its geometric phase 

The model Hamiltonian is 

A = i[ZP*’+ Y (  e<+ <P*) + X<’] + F< (1 )  

with R (  t )  = ( X (  t ) ,  Y (  t ) ,  Z( t ) )  being a time-dependent 3-vector and F being kept 
constant. The latter restriction is not at all essential and is used so that we may employ 
the familiar vector calculus instead of the much more general, but less familiar, language 
of 2-forms (Arnold 1978). The formula derived by Berry (1984) for the adiabatic GCP 

is 

-y,(C) = -6 dA V ( n ;  R )  
J J  

V (  n ;  R )  = Im V R  x ( n (  R)IV,n(R)).  

I t  may readily be verified that the instantaneous eigenfunctions are: 

where { h , }  are the series parts of the usual Hermite polynomials and 

a = - (5) 1 = (F)2 
w = ( X Z  - y y .  

The energy of the nth eigenstate is 

1 w 2 a 2  
2 2  

F , ( R ;  F )  = h w ( n  +;) -- -. 

Clearly, the only contribution to Im ( n ( R ;  x)lV,n(R; x ) )  comes from the phase of 
In(R, x ) ) ,  The R dependences of a and 1 must, insofar as they enter into the real part 
of In(x;  R ) ) ,  necessarily give a net zero contribution to V. We obtain 

The first term in ( 5 )  is identical to that for the GSHO (Berry 1985). The new second 
term arises from a time dependent displacement of the centre of the wavefunction. 
The R dependence of a lies behind this finite second term. Notice the inverse 
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dependence on the quantum of action, h. Notice too, that this part of the phase makes 
a distinct contribution to the total GCP, i.e. its magnitude reflects a different geometrical 
aspect of the circuit C. 

In the next section we obtain the GCP in a different and much more intuitive manner 
which, as will be seen, elucidates the rather abstruse-looking basic formula ( 2 )  by 
linking it to more familiar physical concepts. 

3. A physically motivated deduction of the phase anholonomy 

For the GGSHO we work with the polar form 

+ ( x ,  t )  = N ( x ,  t )  exp -(iS(x, t ) / f i )  

to obtain 

Considerable progress can be made by using the fact that the quantal motion will be 
a compound of a time-dependent motion of the centre of the eigenpacket together 
with time-dependent changes in  packet shape. The real part of the eigenpacket must 
clearly be a displaced Gaussian, for the ground state case. We can therefore make the 
tentative ansatze: 

for the amplitude and phase parts of the evolving ground state. The meanings of a, 
and I,, the two physical parameters whose time-dependences we seek, are clear. The 
meanings of a, P and r will follow in a moment. We find, using the above ansatze, 
from (6b), that: 

P = - ( - - - Y ) .  1 1 dlo 
Z I ,  dt  

From the quantal Hamilton-Jacobi equation, on the other hand, 

d a  
d t  
-+ @ Z +  F + a Y + Zfi2ao/ l i  = 0 

d p / d t + Z P 2 +  X +2PY - Z h 2 / I : = 0  

dF 
-+i(Zcu’) - f Z h 2 ( a ; / I : -  111;) = 0 
d t  

are readily obtained. 
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Using (8) we can rewrite (9a)  and (96) as ODE in the width l o ( t )  and centre a , ( t )  
of the wavefunction. The results obtained are 

These two equations determine, exactly, the evolution of the ground-state wavefunction 
in all cases, i.e. they are true not only in the adiabatic limit but for all parameter 
excursions. Their correctness can be seen by taking the time-independent limit and 
assuming Y = 0. Then we obtain the standard result for the quantal displaced SHO. 

Further confirmation is provided by the fact that the centre of the state, ao( t ) ,  follows 
the correct equation of motion for the corresponding classical oscillator (compare 
Berry (1985) equation (Al.1) for the F=O case). The equation for the state width 
l o ( t )  is non-classical compared with the typical quantum potential term ( = Z h 2 / 1 i ) .  In 
the adiabatic limit the solutions 

are obtained. We see that, even in the adiabatic limit, the time-dependent wavefunction 
does not adjust to the instantaneous values of X ,  Y and Z. There occurs the characteris- 
tic rate-dependent quantity (d/dt)(  Y / Z )  which spoils an exact following of the varying 
system parameters. We shall soon see that it is this property-which the conventional 
adiabatic theorem neglects-that leads to the Berry geometric phase. To calculate the 
overall phase we must integrate the equation for r( 1 ) .  In the adiabatic limit the second 
term (9c) contributes nothing and so 

r ( t )  = L{ loT dt  F 2 [  X (x)]-l - h loT d t  [ X Z  - Y 2  - Z d  ( (12) 
2 Z dt  Z dt  Z 

The geometric phase is, in general, that part of r/ h which is in excess of the dynamical 
phase. We find 

2h  

- - # dA 2h 
V,(a‘ + : I 2 )  x V R  

where we have expanded around the instantaneous frequency w = ( X Z  - Y2)”2 and 
kept only the leading terms -d/dt(  Y / Z ) .  The second term is the Berry phase for the 
cisH0-a result already obtained in Berry (1985). The first term is the extra phase due 
to the presence of the external field. Note that, as in the case of the Aharonov-Bohm 
phase, this term is inversely proportional to h. In contrast the other term is independent 
of h. I t  is curious that the more classical object a,( t )  produces a Bohm-Aharonov-like 
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phase, rather than l , ( t )  which is the more quantal of the two. Excited state GCP can 
be similarly worked out. We do not do so here; instead an alternative method applicable 
to a larger class of systems is derived in the appendix. From that general method (A5) 
we find the excited state CCP to be 

4. The classical case 

The formula for the Hannay angle is (Berry 1985) 

1 w=-f 27r de(VRp)x (vR4) 

where ( p ,  q ;  Z, 8) refers to the ‘instantaneous Hamiltonian’. Now the classical equation 
of motion, for the coordinate q, corresponds to an oscillator with parametrically forced 
frequency in an external field of strength F. Therefore, the action-angle variables for 
the fixed (X, Y, 2) problem are easily calculated. Taking 

it is readily verified that 

& j = ( X Z -  y*) ’ /2=,  

P = ( F Y / U * ) .  

Q = - ( F Z / w * )  

The action Hamiltonian, again at fixed X ,  Y,  Z,  is 

H = ZW - t ( F 2 Z / w 2 )  

and 

a result identical to that found for the GSHO. 
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5. A comparison of the classical and quantal results 

From 

V ( n ; R ) = - -  ( n  2 +$) .?I(”) w x V R ( $ ) - ~ ( v R a 2 ) x V R ( $ )  

and in view of the semiclassical rule (exact here), Z = h(  n +$) we find, using Berry’s 
connection formula, that 

W(Z; R ) = - h V ( n ;  R )  

where use has been made of the identity 

At this level the classical and quantal behaviours are very similar. Any parameter-space 
motion which contributes to V has to contribute to W. However, V and W are not 
observables, and it is at the observable level that we do find striking differences between 
the two kinds of mechanics. Any action-independent contribution to V gives (compared 
with Berry’s connection formula) a zero Hannay angle, yet it contributes freely to the 
quantal phase. In other words the motion of the phase space point (0, P ) ,  which 
represents the centre of the moving, constant area, phase-plane ellipse, is ignored 
classically. The quantal system’s phase, however, registers the motion of (0, P ) .  

Therefore, the vector d ( R )  = $ a 2 V R (  Y / Z )  is analogous to the magnetic vector 
potential in the AB problem. d ( R )  like A( r )  does not touch the classical motion. Yet, 
the flux of its curl through the circuit C gives us the quantal GCP. So W = V R  x d is 
a magnetic-field-like object. Even if, all along C, W vanishes, we shall still see a 
quantal phase, provided only that the flux of W through C is finite. Although the 
vector l 2 v R (  Y / Z )  has similar properties yet it differs crucially from d in that it effects 
both classical and quantal motions. 

6. Discussion 

We have described a system where adiabatic parameter-space transport generates a 
vector-potential-like object d ( R ) .  The fact that d exists in parameter-space while the 
magnetic vector potential is a real-space field is irrelevant, as the AB phase can be 
viewed as stemming from adiabatic transport. Both vectors have identical effects on 
the dynamics of the cylically transported system; the effects depend, however, on 
whether the system obeys quantal or classical laws. A mysterious quantal phase, having 
no classical counterpart is generated by d ( R ) .  This phase, for h + 0, is undefined, 
just as the A B  phase is undefined in the same limit. This represents the central result 
of the present work and it shows that there exist systems in which slow cyclic parameter 
variations do or do not affect the system evolution depending on whether we are using 
quantal or classical laws to describe the dynamics. 

A subsidiary calculation (see § 3)  yields a different and more physical way of 
understanding Berry’s phase for a large class (GCSHO) of systems. Berry’s formula, 
though correct, is not readily understandable. As we have shown, however, it arises 
simply because at every instant the system lags behind the instantaneous Hamiltonian. 
It is this lag that accumulates to give the non-zero Berry phase, y n ( C ) .  Thus, this way 
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of looking at y parallels the analysis of Berry (1985) for the classical motion of the 
angle variable. That analysis, too, was physically motivated. The analysis of 3 3 can 
also be used to calculate the Berry phase for systems which are not, at t = 0, in an 
eigenstate of the corresponding initial Hamiltonian. It has been shown (Ghosh and 
Dutta-Ray 1987) that much interesting information is obtained when we look at the 
Berry phase for non-stationary initial states. 
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Appendix. Calculation of Berry’s phase for the generalised particle in 
a potential problem 

The Hamiltonian is 

ri = f[Zp*2+ Y (  p*4* + ijj) + X4*’] + V,,(ij) 

where the total potential has been split up, for reasons of mathematical convenience, 
into two pans. Vex is all of the potential that is other than harmonic in the coordinate. 
Using the polar form for $ ( x ,  t )  we obtain 

as z f i ’ a 2 N  
a x  2N ax 

V, , (X)+ Y x - - - 7 = 0  

N a t  

Define a new quantity i by 

S(x ,  t )  = S ( x ,  t ) + i (  Y x ’ l Z ) .  

Then equations (A2)  can be rewritten as 

1 dN - -=- z 
N a t  

Now (A3)  can be interpreted as having been derived from the pseudoHamiltonian 

A =f[Zp^’+2q2]+ V e x ( $ )  (A41 

whose eigenfunctions are real. Hence, when we change the parameters of fi adiabati- 
cally, then 

Im (ri(x; B>\vfifi(x; fi>)= o 
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and the standard adiabatic theorem applies, i.e. the phase of the initial wavefunction 
In') changes by 

in a time interval T. The parameters of fi are given by Z, 2 and the parameters of 
V e x ( { ) .  The only contribution to Berry's phase then comes from k and a standard 
Taylor expansion about Z0( t )  gives the result 

y . (Ci=- j :d t&VR 1 (--) Y .- d R  
h ax0 d t  

For the GGSHO, using 

we find the results quoted in (20). 
It is evident that in this reformulation Berry's phase has a purely 'dynamical' origin. 
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